
 

 
 
 

 
Working Paper No. 447 

 
 

Solving the n-Player Tullock Contest 
 
 
 
 
 

Christian Ewerhart 
 
 
 

Revised version, January 2026 
 

 
 

 

 
 

 
 

University of Zurich 
 

Department of Economics 
 

 
 

Working Paper Series 
  

ISSN 1664-7041 (print) 
 ISSN 1664-705X (online) 

 
 

 
 

 
  
 
 
 
 
 
 



Solving the n-Player Tullock Contest*

Christian Ewerhart†

January 19, 2026

Abstract. The n-player Tullock contest with complete information is known to admit

explicit solutions in special cases, such as (i) homogeneous valuations, (ii) constant

returns, and (iii) two contestants. But can the model be solved more generally? In

this paper, we show that key characteristics of the equilibrium, such as individual

efforts, winning probabilities, and payoffs, cannot, in general, be expressed in terms of

the primitives of the model using only basic arithmetic operations and the extraction

of roots. In this sense, the Tullock contest is intractable. We argue that our formal

concept of tractability captures the intuitive notion of the term.
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1 Preliminaries

1.1 Introduction

In the standard n-player Tullock (1980) contest with complete information, each con-

testant i ∈ I ≡ {1, . . . , n} chooses an effort xi ≥ 0 so as to maximize her payoff

Πi =
xR
i

xR
1 + . . .+ xR

n

Vi − xi, (1)

where Vi > 0 is contestant i’s valuation of winning, and R > 0 is a parameter of the

model that measures the extent to which effort, rather than luck, determines the win-

ner of the contest.1 As usual, the ratio in equation (1) is understood to assume the

value 1
n
if the denominator vanishes. Moreover, by renaming the contestants if neces-

sary, it may be assumed w.l.o.g. that V1 ≥ . . . ≥ Vn. The game described above has

found widespread applications in various areas such as marketing, lobbying, electoral

competition, and sports (Konrad, 2009).2

One of the reasons why Tullock’s model has been so fruitful is that its equilibrium in

pure strategies admits a convenient representation in important special cases. Solution

formulas are available if (i) valuations are homogeneous, i.e., V1 = . . . = Vn, (ii) returns

from effort are constant (i.e., R = 1), and (iii) there are n = 2 contestants. In those

cases, the system of necessary Karush–Kuhn–Tucker conditions for an optimal choice

of effort,

∂Πi

∂xi

=
RxR−1

i (xR
1 + . . .+ xR

i−1 + xR
i+1 + . . .+ xR

n )

(xR
1 + . . .+ xR

n )
2

Vi − 1 ≤ 0, (2)

1Indeed, in the limit case R → 0, each contestant wins with the same probability 1
n regardless of

efforts, whereas in the other limit case R → ∞, the highest effort wins with certainty, just as in the
all-pay auction.

2Throughout the analysis, we will assume that contestants differ in valuations only. All our results
can, however, be readily adapted to a setup where contestants differ, in addition, in abilities (i.e.,
individual weight factors put in front of the xR

i terms) and marginal costs.
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with equality if xi > 0, turns out to be tractable under suitable restrictions on the

exogenous parameters. However, it has remained an open question for some time if

further generalization is feasible.3

This paper provides evidence showing that the search for further generalization

is, in a sense, bound to be futile. To this end, we show that the n-player Tullock

contest with heterogeneous valuations and non-constant returns cannot, in general, be

solved by radicals. That is, it is not feasible to express endogenous characteristics of

the equilibrium, such as individual efforts, winning probabilities, or payoffs, in terms

of the primitives of the model using basic arithmetic operations such as addition,

subtraction, multiplication, and division, plus the extraction of roots. We also argue,

but cannot prove of course, that our formal definition of tractability is equivalent to

what is intuitively understood by tractability.4

The derivation of our main result, the intractability of the Tullock contest, proceeds

in two steps. The first step is simple. Recalling that the probabilistic contest is an ag-

gregative game,5 we combine the necessary first-order conditions to a single polynomial

equation whose unique positive solution pins down the equilibrium values of individual

efforts, winning probabilities, and payoffs for all players. The issue of tractability of

the Tullock contest is thereby boiled down to the question of whether a specific class

of polynomial equations can be solved by radicals.6 The second step of the analysis,

3Cf. Ryvkin (2007). The lack of a complete solution complicates, in particular, the comparison
with the standard all-pay auction for which a complete solution is available (Baye et al., 1996).

4The term “radical” appears also in Hilbert’s Nullstellensatz (Kübler et al., 2014, Thm. 2.1). There,
it refers to the radical of an ideal, whereas here, it corresponds to the extraction of a root.

5In an aggregative game, individual payoffs are functions of the player’s own action and some
aggregate of the actions of the other players. See, e.g., Corchón (1994).

6Thus, the initial step of our analysis is analogous to the application of the Shape Lemma (Kübler
and Schmedders, 2010a) that finds, under general conditions, a single univariate polynomial equation
from which the solutions to a whole system of polynomial equations in several variables can be derived
in a straightforward way.
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however, is based on tools from Galois theory, which is a core topic in abstract algebra

(van der Waerden, 1937). Specifically, we construct an example with n = 5 contestants

and parameter R = 1
2
, and show that the associated polynomial equation derived in

the first step cannot be solved by radicals. That result is extended, first to general

valuations, and then to an arbitrary number of contestants n ≥ 5. As any general

solution formula for n contestants must solve, in particular, the case R = 1
2
, we obtain

our impossibility result.7

1.2 Galois theory

In the early 19th century, the French mathematician Évariste Galois developed the

theory named after him, concomitantly with the theory of permutation groups, to

address questions of tractability of polynomial equations of degree five and higher.8 The

idea of this theory is that the roots of a polynomial constitute a finite set whose elements

can be permuted.9 The Galois group of a polynomial consists of those permutations

of the roots that leave all multivariate algebraic relationships with rational coefficients

between the roots intact. The fundamental insight of Galois was that the structure of

the Galois group of a polynomial g(X) contains information about the solvability of

the associated polynomial equation g(X) = 0 by radicals. That is, the Galois group

encodes if, and if so how, the roots of a polynomial equation can be computed from

the coefficients of the polynomial using the basic arithmetic operations of addition,

7While this settles the issue in the general case, we will also explain why it is unlikely that solution
formulas for other values of R will be found.

8At the time, Galois’ theory provided answers to other long-standing problems such as the trisection
of an angle, the doubling of the cube, and the construction of regular polygons (Edwards, 1984).
More recently, Galois representations featured prominently in Andrew Wiles’ proof of Fermat’s Last
Theorem.

9As usual, a complex number s ∈ C is called a root of the polynomial g(X) if g(s) = 0.
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subtraction, multiplication, and division, plus the extraction of roots. To obtain a

definite answer for a specific polynomial equation, it is crucial to check:

(i) if the polynomial is irreducible, i.e., it does not decompose into a product of

simpler polynomials, and

(ii) provided that the polynomial is irreducible, the Galois group of the polynomial

is solvable.10

Thus, if the relevant polynomial is irreducible and the Galois group lacks the property

of solvability, then one may conclude that its roots cannot be represented “in explicit

terms.” In this paper, we use Galois theory to study the tractability of the n-player

Tullock contest.

1.3 Contribution

To evaluate the contribution of the present paper, it is essential to understand why

our main result, the intractability of the Tullock contest, is not a straightforward

consequence of the Abel-Ruffini Impossibility Theorem.11 In short, that result says

that, in contrast to polynomials of degree at most four, there is no general solution

to polynomial equations of degree five or higher. On a superficial level, that seems

to settle our research question, because it is not too difficult to find specifications of

the primitives of the n-player Tullock contest for which the equilibrium conditions can

be combined into a polynomial equation of arbitrarily high degree. However, there do

exist families of polynomial equations of degree five and above that admit an explicit

10Definitions will be provided below.
11Cf. Kübler et al. (2014, fn. 5). An accessible exposition of the Abel-Ruffini Theorem can be found

in Rosen (1995). Dummit (1991) and Kobayashi and Nakagawa (1992) derived formulas for the roots
of solvable equations of degree five. Spearman and Williams (1994) characterized such equations.
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solution. And indeed, this matters in the case of the Tullock contest, as the following

example illustrates.

Example 1 Suppose that there are n = 5 contestants, with valuations given by

(V1, V2, V3, V4, V5) = (27, 18, 12, 7, 2).

Suppose also that R = 1
2
. Then, as detailed in Appendix A.1, the analysis of the first-

order conditions leads to a quintic, i.e., to a polynomial equation of degree five. Still,

the unique equilibrium is given by x∗
i =

24
(1+48/Vi)2

, or more explicitly, by

(x∗
1, x

∗
2, x

∗
3, x

∗
4, x

∗
5) = (1944

625
, 216
121

, 24
25
, 1176
3025

, 24
625

)

= (3.11, 1.79, 0.96, 0.39, 0.04).

The example shows that there do exist tractable examples even in cases in which the

analysis leads to a polynomial equation of degree greater than four. This point is not

obvious because the set of polynomials that arise from the analysis of contests is, as

follows from Equation (19) below, a strict subset of the set of all polynomials. In this

sense, Example 1 is special.12 Thus, the main result of the present paper indeed does

not easily follow from the Abel-Ruffini theorem.

1.4 Related literature

The present paper lies on the intersection of two strands of literature. The first is

the literature on contests. Since Tullock’s (1980) seminal work, explicit solutions of

the probabilistic contest model have been derived under various sets of assumptions.

12Example 1 is, in fact, the only such example that we found during our investigations. As will
be explained, this is not surprising given our main result and quantitative versions of Hilbert’s Irre-
ducibility Theorem.
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The main contributions identifying pure-strategy solutions in the basic model, such

as Hillman and Riley (1989), Pérez-Castrillo and Verdier (1992), Nti (1999), Stein

(2002), Cornes and Hartley (2005), and Ewerhart (2025a), will be reviewed in Section

3.13 Most prominently, Ryvkin (2007) pointed out the lack of explicit solutions for the

n-player Tullock contest with heterogeneous valuations and non-constant returns. To

address the issue, he employed first-order Taylor approximations around the tractable

case of homogeneous valuations.14

The second strand of literature concerns the use of algebraic methods in game theory.

Dresher et al. (1949) studied polynomial zero-sum games. Nash and Shapley (1950)

characterized equilibria in behavior strategies in terms of roots of polynomial equa-

tions. In seminal work, Blume and Zame (1994) pointed out that the set of sequential

equilibria of a finite extensive-form game is semi-algebraic, i.e., it may be understood

as the set of solutions of a system of polynomial equalities and inequalities. Nau et al.

(2004) noted that an irrational Nash equilibrium of a finite normal-form game with

rational coefficients cannot be a corner point of the set of correlated equilibria. Datta

(2003) showed that any real algebraic variety may be understood as the set of totally

mixed equilibria of some finite normal-form game. Kübler and Schmedders (2010a,

2010b) constructed Gröbner bases for semi-algebraic sets that characterize equilibria

of various kinds. Nie and Tang (2023, 2024) obtained algorithmic solutions to Nash

equilibrium problems that are given by polynomial functions. None of these papers,

however, employed Galois theory. As far as we know, there have been very few applica-

13Pérez-Castrillo and Verdier (1992), Cornes and Hartley (2005), and Ewerhart (2025a) documented
the possibility of multiple pure-strategy equilibria in Tullock contests with increasing returns and more
than two players. Mixed-strategy equilibria of the n-player Tullock contest have been characterized
by Baye et al. (1994), Alcalde and Dahm (2010), Wang (2010), Ewerhart (2015, 2017a, 2017b, 2025b),
and Feng and Lu (2017).

14See also Ryvkin (2013).
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tions of Galois theory to game theory so far. Specifically, in response to the question by

McKelvey and McLennan (1997) as to whether the computation of the equilibrium set

could be simplified by starting from one equilibrium considered as known, Gandhi and

Chatterji (2015) used Galois theory to construct new equilibria from a given sample

equilibrium.15 That approach led, in particular, to novel algorithms for the computa-

tion of mixed Nash equilibria in games with rational payoffs and irrational equilibria.

However, those contributions are not directly related to our impossibility result.16

1.5 Overview

The remainder of the paper is structured as follows. Section 2 provides the necessary

background on Galois theory. Section 3 reviews existing equilibrium characterizations

for the Tullock contest. Section 4 presents our main result. Section 5 offers some

discussion. Section 6 concludes. An Appendix contains material omitted from the

body of the paper.

2 Background on Galois theory

This section provides the necessary background on Galois theory. We will discuss

polynomial equations (Section 2.1), the Galois group (Section 2.2), and the Galois

equivalence (Section 2.3).

15See also Gandhi (2011) and Chatterji and Gandhi (2011).
16The notion of algebraic tractability developed below also clearly differs from the widely used

notion of computational tractability, which refers to deterministic computability in polynomial time
in the context of the P vs. NP problem (e.g., von Stengel and Forges, 2008).
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2.1 Polynomial equations

We consider equations of the type g(X) = 0, where

g(X) = aNX
N + . . .+ a1X + a0

is a polynomial with coefficients a0, . . . , aN .
17 If aN ̸= 0, then N is the degree of g(X).

A polynomial equation g(X) = 0 is solvable by radicals if its roots can be found

from elements of the respective coefficient field by repeatedly taking sums, differences,

products, and quotients, as well as by extracting roots. Here, the individual operations

are understood to be finite in nature so that, e.g., infinite series are not allowed.

Further, the extraction of roots refers to the inverse of the power map s 7→ sK , where

K ≥ 2 is an integer.18

For instance, the polynomial equation X5 − 2 = 0 is solvable by radicals because

one solution is given by X = 5
√
2, and the other solutions can be easily found by

multiplying the known solution with a fifth unit root. In contrast, X5−X +1 = 0 is a

classic example of a quintic not solvable by radicals. Proving that a specific equation

is not solvable, however, requires the methods of Galois theory that will be reviewed

below.

17Let Q = {p
q : p, q integers, q ̸= 0} denote the field of rational numbers. For specific valuations

V1, . . . , Vn ∈ Q, we will consider polynomials g(X) over Q. Hence, in this case, a0, . . . , aN ∈ Q.
For general valuations, we will consider polynomials g(X) ≡ g(X;V1, . . . , Vn) over the field of ra-

tional functions, Q(V1, . . . , Vn) = { g1(V1,...,Vn)
g2(V1,...,Vn)

: g1, g2 polynomials with integer coefficients, g2 is not

identically zero}. In that case, a0, . . . , aN ∈ Q(V1, . . . , Vn).
18For s ≥ 0, the inverse map is simply s 7→ K

√
s. For complex s and K ≥ 2, however, the power map

is not globally invertible. Instead, any s ̸= 0 admits precisely K pre-images that differ by powers of
the Kth unit root. This multiplicity issue must be kept in mind when extracting roots from complex
numbers. In those cases, solvability by radicals is understood in the most general sense, i.e., any
pre-images in a given solution formula may be picked, if necessary (van der Waerden, 1937, § 56). For
an illustration of this possibility, see the discussion of Equation (A.4) in the Appendix.
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2.2 The Galois group

To decide if a polynomial equation is solvable, it is obviously sufficient to restrict

attention to polynomials that cannot be easily factored. Formally, a polynomial over

the field of rational numbers Q, or similarly, over the function field Q(V1, . . . , Vn), is

irreducible if it cannot be written as a product of two or more polynomials of degree

at least one with coefficients in the same field.19 To solve an irreducible equation by

radicals, it suffices to be able to express a single root in this way (Edwards, 1984, p. 65,

ex. 4). Another useful and well-known fact is that the roots of a polynomial g(X) that

is irreducible over Q have multiplicity one (Stewart, 2015, Prop. 9.14), and the same is

true for polynomials irreducible over Q(V1, . . . , Vn). Thus, the number of distinct roots

equals the degree of the polynomial in this case.

Consider an irreducible polynomial g(X) of degree N with rational coefficients. Let

r1, . . . , rN denote the different roots of g(X). Given that {r1, . . . , rN} is a finite set, we

may study its permutations, i.e., one-to-one mappings of this set. The set of all such

permutations forms a group, known as the symmetric group SN .
20 Now, the roots may

jointly satisfy an algebraic relationship, say h(r1, . . . , rN) = 0, where h(Y1, . . . , YN) is a

multivariate polynomial with rational coefficients. The Galois group of g(X), denoted

by G, consists of those permutations π of the roots with the property that any algebraic

19While the irreducibility of a given polynomial may, with some luck, be verified using Gauss’ lemma,
parameter transformations, and Eisenstein’s criterion, using computer algebra software is often more
convenient. See Appendix A.8.

20In abstract algebra, a finite group consists of a finite set of elements (here: a set of permutations of
the roots of a polynomial), a binary operation (here: the composition of permutations), and a neutral
element (here: the trivial permutation that keeps all roots fixed) such that (i) the group operation is
associative, (ii) every element has an inverse, and (iii) the group operation with the unit element has
no effect. E.g., in S3 = {e, (12), (13), (23), (123), (132)}, the neutral element is e, and the permutation
(123) maps roots r1 to r2, r2 to r3, and r3 to r1. Moreover, the group operation corresponds to the
execution of the permutations from right to left. E.g., in S3, we have (12)(123) = (23). It is important
to realize that the group operation need not be commutative. And indeed, (123)(12) = (13) ̸= (23).
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relationship h(r1, . . . , rN) = 0 satisfied by the roots remains true after applying π to

the roots, i.e., h(rπ(1), . . . , rπ(N)) = 0. We illustrate the concept with an example.

Figure 1: The permutation π0 operates on the roots of the polynomial g0(X).

Example 2 The polynomial g0(X) = X3 − 9X − 9 has the three real roots r1 = 3.41,

r2 = −1.18, and r3 = −2.23, as illustrated in Figure 1.21 The Galois group G0 of g0(X)

turns out to be the cyclic group of order three,22 a generator of which is the permutation

π0 = (123) that maps rν to rν+1 if ν ∈ {1, 2} and r3 to r1. To understand why

some permutations are members of the Galois group, while others are not, consider the

following two illustrations. First, the algebraic relationship (r1− r2)(r2− r3)(r1− r3) =

27 remains valid if π0 is applied to the roots. One can show that this is actually true for

any algebraic relationship in the three variables r1, r2, and r3 with rational coefficients.

This means by definition that π0 is a member of G0. Second, the very same relationship

becomes invalid if, for instance, the permutation π1 = (12) is applied, because

(rπ1(1) − rπ1(2))(rπ1(2) − rπ1(3))(rπ1(1) − rπ1(3)) = (r2 − r1)(r1 − r3)(r2 − r3) = −27 ̸= 27.

Thus, π1 is not a member of G0.

21This polynomial happens to arise in the analysis of a three-player contest with valuation vector
(V1, V2, V3) = (6, 3, 2) and parameter R = 1

2 . See Appendix A.4.
22The order of a finite group is the number of its elements.
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This definition of the Galois group extends in a completely analogous way to polyno-

mials with coefficients in Q(V1, . . . , Vn).

2.3 Galois’ equivalence23

The gist of Galois theory is that the knowledge of the Galois group of an irreducible

polynomial allows us to decide if the corresponding polynomial equation can be solved

by radicals or not. In particular, for a polynomial g(X) of degree five that is irreducible

over the rationals, it suffices to show that the Galois group is, e.g., the full symmetric

group S5 to be able to deduce that g(X) = 0 cannot be solved by radicals.

By definition, the group G is solvable if there is a finite sequence of subgroups

{1} = G(0) ⊊ G(1) ⊊ · · · ⊊ G(L) = G, (3)

such that each G(l) is a normal subgroup of G(l+1), and all quotient groups G(l+1)/G(l) are

abelian.24 Intuitively, a non-abelian quotient group in a maximally refined sequence (3)

is a “smoking gun” for the existence of a root that cannot be found by basic arithmetic

operations and the extraction of roots alone.

Lemma 1 (Galois Equivalence) Let g(X) be a polynomial that is irreducible over

Q (or over Q(V1, . . . , Vn)). Then, the following statements are equivalent:

(i) g(X) = 0 is solvable by radicals;

(ii) the Galois group of g(X) is solvable.

23The main result of Galois theory is the inclusion-reversing isomorphism between the lattice of
intermediate fields of a finite Galois extension and the lattice of subgroups of its Galois group. That
insight, known as Galois’ correspondence, is used to derive Lemma 1 below.

24A subgroup N of a group G is called normal if πNπ−1 = N for all elements π ∈ G. It is a basic
result in group theory that the cosets πN form a group, known as the quotient group. A group G is
called abelian if the group operation is commutative.
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Proof. See Stewart (2015, Thms. 15.8 and 18.21). □

We illustrate Lemma 1 by returning to our earlier example.

Example 2 (continued) The cyclic group of order three, C3 ⊆ S3, which is generated

by the permutation π0 = (123),25 admits the trivial decomposition

G(0) ⊆ G(1)

q q
{e} ⊆ C3.

Thus, C3 is solvable. By Lemma 1, this is equivalent to the statement that the equation

g0(X) = 0 is solvable by radicals. And indeed, an application of Cardano’s formula

yields r1,2,3 = 3

√
9+

√
−27
2

+ 3

√
9−

√
−27
2

, where the three solutions result from choosing

different values for the cubic roots (see Appendix A.3). Thus, the solutions of g0(X) = 0

may indeed be represented using basic arithmetic operations and the extraction of roots

alone.26

In the example, we of course knew about the existence of an explicit formula before,

because the degree of g0 (X) is just three, but the point is that Lemma 1 holds for

polynomials of any degree.

3 Tractable cases of the Tullock contest

This section reviews the main results in the literature that provide an explicit solution

to the Tullock contest. For convenience, we will restrict attention to equilibria in pure

strategies, emphasizing cases in which the equilibrium is unique.

25Thus, C3 = {e, (123), (132)}.
26Contrary to what one might expect, the explicit representation in this and similar examples may

require (i) extracting roots from complex numbers even if the polynomial has only real roots (van der
Waerden, 1937, pp. 188-189), and (ii) taking repeated radicals even if the extension is cyclic and of
prime degree (Kang, 2000, Thm. 1).
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3.1 Homogeneous valuations

Suppose first that V1 = . . . = Vn ≡ V > 0, i.e., all contestants possess the same positive

valuation of winning. Assuming, for the moment, a symmetric strategy profile with

x1 = . . . = xn > 0, the necessary first-order condition for contestant i ∈ I simplifies

and yields an equilibrium effort of

x∗
i =

(n− 1)RV

n2
. (4)

Clearly, contestant i wins with equal probability p∗i = 1
n
. The corresponding equilib-

rium payoff is, therefore, given by

Π∗
i =

(n− (n− 1)R)V

n2
. (5)

It turns out that these formulas characterize the unique symmetric Nash equilibrium

if and only if R ≤ n
n−1

.

However, as noted by Pérez-Castrillo and Verdier (1992, Prop. 3), there may also be

asymmetric equilibria. In any such equilibrium, a strict subset of the players exerts the

same positive effort while the remaining players exert a zero effort. Since the Tullock

contest does not admit equilibria in which only one contestant exerts a positive effort,

an asymmetric equilibrium requires n ≥ 3 players (under the present assumptions).

More specifically, an asymmetric equilibrium with precisely m ∈ {2, . . . , n− 1} active

contestants can be shown to exist if and only if R ∈ [R∗(m), R∗(m)], where R∗(m) =

m
m−1

and R∗(m) ∈ (1, R∗(m)) are threshold values (Ewerhart, 2025a, Prop. 2).

The following result summarizes the discussion.

Proposition 1 Suppose that V1 = . . . = Vn ≡ V > 0 and that either (i) n = 2 and

R ≤ 2, or (ii) n ≥ 3 and R < R∗(n− 1). Then, the pure-strategy Nash equilibrium is

14



unique, symmetric, interior, and characterized by (4) and (5).27

Proof. By Pérez-Castrillo and Verdier (1992, Prop. 4), the symmetric equilibrium

exists, is interior, and satisfies (4) and (5) if R ≤ n
n−1

. For n = 2, this equilibrium is

always unique (cf. Prop. 3 below). For n ≥ 3, the equilibrium is unique if and only if

R < R∗(n− 1), where R∗(n− 1) < n
n−1

(Ewerhart, 2025a, Prop. 5 & Appendix). □

3.2 Constant returns

Suppose next that R = 1. Then, the necessary first-order condition for a contestant i

exerting a positive effort xi > 0 simplifies to

X − xi

X2
Vi − 1 = 0,

where X = x1 + . . . + xn is the aggregate effort.28 Solving for xi and subsequently

adding over the n contestants, one obtains the equilibrium value

X∗ =
(n− 1)V̄n

n
, (6)

where V̄n = n
(
V −1
1 + . . .+ V −1

n

)−1
denotes the harmonic mean of contestants’ valua-

tions. Individual efforts, winning probabilities, and payoffs may be computed from X∗

27For n ≥ 3 and R ∈ [R∗(n − 1), 2], there are multiple asymmetric equilibria. In that case, the
number of contestants m exerting a positive effort may vary, but the equilibrium efforts and payoffs
of those active contestants are characterized as above with n replaced by m. For R > 2, there is no
equilibrium in pure strategies. See Cornes and Hartley (2005, Thm. 7), Ryvkin (2007, Sec. 3), and
Ewerhart (2025a).

28For convenience, we use X to denote both a formal indeterminate and aggregate effort in the
contest analysis.
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via the relationships

x∗
i = X∗

(
1− X∗

Vi

)
, (7)

p∗i = 1− X∗

Vi

, (8)

Π∗
i =

(
1− X∗

Vi

)2

Vi. (9)

An analysis of optimal entry shows that this characterizes an interior Nash equilibrium

in pure strategies if and only if Vn > n−1
n
V̄n (or equivalently, if and only if Vn >

n−2
n−1

V̄n−1).

Proposition 2 Suppose that R = 1 and Vn > n−2
n−1

V̄n−1. Then, the pure-strategy Nash

equilibrium is unique, interior, and characterized by (7)-(9).

Proof. The equilibrium property has been established by Hillman and Riley (1989,

Prop. 5). The observation that the equilibrium is unique has been made at various

places in the literature (Gibbens and Kelly, 1999; Stein, 2002; Matros, 2006). □

If the condition on the valuations is not satisfied, contestant n exerts zero effort, and

the characterization applies analogously with (n − 1) replacing n. By iterating this

argument, one determines the set of contestants that exert positive effort. In this case,

the unique equilibrium is a boundary equilibrium.

3.3 Two active contestants

Suppose finally that n = 2. In this case, the two first-order conditions read

RxR−1
1 xR

2

(xR
1 + xR

2 )
2
V1 = 1,

RxR−1
2 xR

1

(xR
1 + xR

2 )
2
V2 = 1.
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Dividing the two equations yields

x2 = λx1,

with λ = V2/V1 ∈ (0, 1], which allows eliminating x2 in the first-order condition of

contestant 1. Rearranging, one arrives at equilibrium efforts

x∗
1 =

RV R+1
1 V R

2

(V R
1 + V R

2 )2
and x∗

2 =
RV R

1 V R+1
2

(V R
1 + V R

2 )2
. (10)

From this, we obtain winning probabilities p∗i = V R
i /(V R

1 + V R
2 ), as well as payoffs

Π∗
1 =

V R+1
1

(
V R
1 + (1−R)V R

2

)
(V R

1 + V R
2 )2

, (11)

Π∗
2 =

V R+1
2

(
(1−R)V R

1 + V R
2

)
(V R

1 + V R
2 )2

. (12)

It can now be checked that these equations characterize the unique Nash equilibrium

in pure strategies if and only if R ≤ 1 + λR.29

Proposition 3 Suppose that n = 2 and that R ≤ 1+(V2/V1)
R. Then, the pure-strategy

Nash equilibrium is unique, interior, and characterized by (10)-(12).

Proof. See Nti (1999). □

It apparently went unnoticed in the literature that, in the case of strictly increasing

returns to scale, Proposition 3 admits an extension to the case of n ≥ 3 contestants.

Specifically, for R ∈ (1, 1 + λR] and V3/V1 not too large, there exists an equilibrium

in which only contestants 1 and 2 are active, choosing their efforts as if there were no

other contestants. Depending on the vector of valuations, there may also be multiple

equilibria in this case, with another pair of players being active.30

29For R > 1 + λR, there are no equilibria in pure strategies. If R ∈ (1 + λR, 2], then contestant
1 uses a pure strategy while contestant 2 uses a mixed strategy (this case requires V2 < V1). See
Wang (2010), Ewerhart (2017b), and Feng and Lu (2017). For R > 2, the equilibrium is in mixed
strategies (Baye et al., 1994; Alcalde and Dahm, 2010; Wang, 2010; Ewerhart, 2015, 2017a) and
unique (Ewerhart, 2025b).

30For further details, see Appendix A.2.
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Apart from the cases surveyed above, we are not aware of any explicit characteri-

zations of the pure-strategy Nash equilibrium in the literature. It is known, however,

that the solution is unique and interior for any R ∈ (0, 1) and any V1 ≥ . . . ≥ Vn > 0

(Szidarovszky and Okuguchi, 1997). We will therefore focus on this case in the sequel.

4 A limitation of tractability

This section outlines our main contribution. We start by providing a formal definition

of tractability (Section 4.1), illustrate it with an example (Section 4.2), and finally,

present the main result of the paper (Section 4.3).

4.1 A formal definition of tractability

Fix n ≥ 2 and let R ∈ (0, 1). The primitives of the model are the exogenous parameters

V1 ≥ . . . ≥ Vn > 0. We define tractability as follows.

Definition 1 We say that the n-player Tullock contest with parameter R is solvable

by radicals if its key equilibrium characteristics, including individual efforts, win-

ning probabilities, and payoffs, may be determined from the primitives of the model by

repeatedly taking sums, differences, products, and quotients, as well as extracting roots.

For the applied economist, the definition might seem restrictive. For example, addi-

tional functions could be added to the set of admissible operations. However, as will be

discussed below, there are good reasons to assume that the definition captures what is

intuitively understood by tractability within the considered class of games. Definition

1 also seems to be the first formal definition of algebraic tractability in the economics

literature, and might therefore be of independent interest.
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The tractable cases surveyed in Section 3 all satisfy the definition. A particular

case is Proposition 3, which features the term λR = (V2/V1)
R in the solution formulas.

If R = p
q
is rational, however, then λR = λp/q = q

√
λp, which is representable using

radicals. Thus, recalling that the set of rational numbers is dense in the reals, there is

little that is lost.

Our main result (Theorem 1 below) says that the n-player Tullock contest is, in

general, not solvable by radicals. It even shows that none of the equilibrium character-

istics mentioned in Definition 1 can be determined using basic arithmetic operations

and root extractions alone.

4.2 An intractable example

The following example illustrates that the n-player Tullock contest may fail to be

solvable by radicals for specific values of the primitives.

Example 3 Suppose that there are n = 5 contestants, with valuations

(V1, V2, V3, V4, V5) = (5, 4, 3, 2, 1).

Suppose, in addition, that R = 1
2
. Then there is a unique Nash equilibrium in pure

strategies

x∗ = (x∗
1, x

∗
2, x

∗
3, x

∗
4, x

∗
5)

= (0.53, 0.38, 0.25, 0.13, 0.04).

However, for none of the players can the equilibrium efforts, winning probabilities, or

payoffs be derived from the primitives of the model using basic arithmetic operations

and the extraction of roots alone.
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Next, we explain why Example 3 is not tractable. For R = 1
2
, while keeping n ≥ 2 and

V1 ≥ . . . ≥ Vn > 0 general, the system of necessary first-order conditions (2) reads

√
X −√

xi

2
√
xiX

Vi − 1 = 0,

where X = (
√
x1 + . . . +

√
xn)

2 is a generalized aggregate of individual efforts. These

conditions are also sufficient because the marginal return is infinite at zero effort, so

that all contestants choose a positive effort.31 Solving for
√
xi yields

√
xi =

√
XVi

2X + Vi

. (13)

Summing over all contestants, and subsequently dividing by
√
X > 0, one obtains

V1

2X + V1

+ . . .+
Vn

2X + Vn

= 1. (14)

Given that the left-hand side assumes the value n for X = 0 and is continuously

diminishing to zero for large X, this equation uniquely characterizes the equilibrium

value X∗ > 0. Moreover, given X∗, we arrive at

x∗
i =

X∗V 2
i

(2X∗ + Vi)2
, (15)

p∗i =
Vi

2X∗ + Vi

, (16)

Π∗
i =

(X∗ + Vi)V
2
i

(2X∗ + Vi)
2 . (17)

Conversely, if for some i ∈ {1, . . . , n}, only one of the endogenous characteristics x∗
i ,

p∗i , or Π
∗
i is known, then we can derive X∗ by solving, in the worst case, a quadratic

equation.

31Indeed, using a suitable substitution (e.g., Szidarovszky and Okuguchi, 1997), this case may be
rephrased as a Tullock contest with constant returns and quadratic costs.
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From the above, the generalized aggregate X in our example satisfies

5

2X + 5
+

4

2X + 4
+

3

2X + 3
+

2

2X + 2
+

1

2X + 1
= 1.

Multiplying through and collecting terms, we obtain the polynomial equation

g(X) = 8X5 − 170X3 − 450X2 − 411X − 120 = 0. (18)

Ignoring negative solutions,32 one numerically finds the root X∗ = 5.72.

Our discussion so far may be summarized as follows.

Lemma 2 The following statements are equivalent:

(i) For some player i, the equilibrium effort x∗
i is solvable by radicals.33

(ii) For some i, the equilibrium winning probability p∗i is solvable by radicals.

(iii) For some i, the equilibrium payoff Π∗
i is solvable by radicals.

(iv) g(X) = 0 is solvable by radicals.

Proof. See the text above. □

We will now show that g(X) is not solvable by radicals. In view of Lemma 1, it suffices

to check the following facts.

Lemma 3 The following statements are true:

(i) g(X) is irreducible over Q;

32Indeed, in addition to the unique positive solution, equation (14) has a total of (n − 1) negative
solutions, each of which lies strictly between a pair of neighboring poles.

33Note the abuse of terminology. We mean here that x∗
i , etc., may be expressed by repeatedly

applying basic arithmetic operations and roots.
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(ii) the Galois group of g(X) is the full symmetric group S5;

(iii) S5 is not solvable.

Proof. Parts (i) and (ii) have been established using Sage. For details, see Appendix

A.8. Part (iii) is well-known. See, e.g., Stewart (2015, Cor. 14.8). □

Thus, g(X) is indeed not solvable by radicals, and the contest in Example 3 is in-

tractable.

4.3 A general result

The following theorem is the main result of this paper.

Theorem 1 For n ≥ 5 and R = 1
2
, the n-player Tullock contest with general valuations

V1 ≥ . . . ≥ Vn > 0 is not solvable by radicals.

Proof. See Appendix A.5. □

The theorem above may be understood as an impossibility result. Indeed, if a formula

existed for the equilibrium in the n-player contest, given valuations V1 ≥ . . . ≥ Vn > 0

and a parameter R > 0, possibly with case distinctions, then it should specialize, in

particular, to a formula in the case R = 1
2
. Since such a formula is not available by the

theorem, a general solution of the Tullock contest is not feasible.34

To understand what Theorem 1 entails, it is important to distinguish solvability

over Q and solvability over Q(V1, . . . , Vn). In the analysis of Example 3, we checked

that g5(X) is not solvable over Q. In contrast, Theorem 1 says for the case n ≥

5 that the polynomial gn(X;V1, . . . , Vn) that characterizes the generalized aggregate

34For an explicit discussion of contests with R ̸= 1
2 , see Section 5.
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X as a function of the valuation vector is not solvable over Q(V1, . . . , Vn).
35 This

result is stronger than the example for two reasons. First, it allows us to extend

the impossibility captured by Example 3 to larger contests. Thus, for any n ≥ 5,

no general solution formula exists that would allow to compute the solution for all

valuation vectors (V1, . . . , Vn).

Second, the reformulation allows us to assess how “typical” the intractability prop-

erty is for, say, randomly selected primitives. By Hilbert’s Irreducibility Theorem, a

fundamental result in diophantine geometry, there are infinitely many valuation vec-

tors (V1, . . . , Vn) ∈ Qn such that the Galois group of the polynomial with coefficients in

Q(V1, . . . , Vn) does not change when specific values are plugged in and the polynomial

is considered over Q instead. Quantitative versions of this result, such as given by Co-

hen (1981), imply that such valuation vectors can always be found in the economically

relevant domain, i.e., when V1 ≥ V2 ≥ . . . ≥ Vn > 0. In fact, there is a sense in which

“almost all” such vectors with rational components have this property.

Corollary 2 Consider the n-player Tullock contest with n ≥ 5 and R = 1
2
. Let V max >

0 be a rational number, and ε > 0. Then, for any sufficiently small grid step δ > 0

that divides the interval [0, V max] evenly into M = V max

δ
subintervals, the share of the

tractable cases within the set of valuation vectors (V1, . . . , Vn) such that V1 ≥ . . . ≥ Vn >

0 and such that each Vi is taken from the grid {δ, 2δ, 3δ, . . . , (M − 1)δ,Mδ = V max} is

smaller than ε.

Proof. See Appendix A.6. □

35This polynomial will be determined explicitly below. For example, for n = 5, it reads

g5(X;V1, . . . , V5) = 32X5 − 8σ2 X
3 − 8σ3 X

2 − 6σ4 X − 4σ5,

where the σk are elementary symmetric functions in V1, . . . , V5. See Footnote 36.
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Thus, Theorem 1 implies that the n-player Tullock contest is intractable for any n ≥ 5

and the vast majority of specifications of the valuation vector.

Theorem 1 is obtained by contradiction. In the Appendix, we determine the general

form of equation (18) as

gn(X;V1, . . . , Vn) =
∑n

k=0
(1− k)σk(V1, . . . , Vn)(2X)n−k, (19)

where σk ≡ σk(V1, . . . , Vn) denotes the elementary symmetric polynomial of degree k in

the variables V1, . . . , Vn.
36 As discussed above, for any economically meaningful choice

of the valuation vector, gn(X;V1, . . . , Vn) has n distinct roots of multiplicity one, and

the generalized aggregate X∗ = X∗(V1, . . . , Vn) as its sole positive root. We show that

the Galois group of gn(X;V1, . . . , Vn) over the function field Q(V1, . . . , Vn) contains the

Galois group of gn−1(X;V1, . . . , Vn−1) as a subgroup. That result is obtained using

the concept of specialization in Galois theory (van der Waerden, 1937, §61). Intu-

itively, we replace Vn by the value zero, which amounts to a well-defined mapping from

the integral domain of parameterized polynomials Q(V1, . . . , Vn)[X] onto its subring

Q(V1, . . . , Vn−1)[X], even though we cannot do this in any solution formula.37 Hence,

by induction, we can make our way down to g5(X;V1, . . . , V5). The Galois group of that

polynomial over Q(V1, . . . , V5), however, can be shown to be the full symmetric group

S5, because it specializes to Example 3. As S5 is not solvable, we may use Lemma 1

to deduce that gn(X;V1, . . . , Vn) is not solvable by radicals over Q(V1, . . . , Vn), for any

n ≥ 5.

In fact, for a rigorous application of Lemma 1, we also need to show that gn(X) ≡
36Thus, σ0 = 1, σ1 = V1 + . . .+ Vn, σ2 = V1V2 + . . .+ Vn−1Vn, and so on, up to σn = V1 · . . . · Vn.

Cf. Stewart (2015, Sect. 18.2).
37Indeed, Vn might occur in the denominator of the solution formula, so that setting Vn = 0 may

not be a well-defined operation.
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gn(X;V1, . . . , Vn) is irreducible over Q(V1, . . . , Vn). Noting that the leading coefficient

of the corresponding polynomial in Z = 2X is one, Gauss’ lemma implies that it suffices

to check that gn(X) is irreducible over the unique factorization domain Z[V1, . . . , Vn].

We show that gn(X) does not admit a linear factor for any n ≥ 2. Moreover, we prove

that

gn(X;V1, . . . , Vn−1, 0) = (2X) · gn−1(X;V1, . . . , Vn−1). (20)

The proof now proceeds by induction. Clearly, g2(X;V1, V2) = 4X2−V1V2 is irreducible

over Z[V1, V2]. Moreover, if gn(X) was reducible for some n ≥ 3, then each factor

would be quadratic at least, and hence, by relationship (20), the decomposition would

be inherited by gn−1(X), completing the argument.

5 Discussion

This section offers additional perspective on our findings. We first argue that, for

the considered class of games, our concept of tractability is unlikely to be affected

even if we were to add further functions as admissible operations (Section 5.1). Next,

we note that, whatever definition we ultimately choose, there will always be a need

for a postulate ensuring that the preferred definition captures the intuitive notion of

tractability (Section 5.2). Then, we explain why explicit solutions cannot, in general,

be expected for parameter values other than R = 1
2
(Section 5.3). Finally, we discuss

the implications for numerical analysis (Section 5.4).

5.1 Adding elementary functions

As noted before, one might argue that the notion of tractability promoted in this

study is of limited interest because economists are familiar with a number of special
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functions, such as the exponential, the logarithm, and various trigonometric functions.

Upon reflection, however, it seems very unlikely that the addition of such functions

would resolve the tractability issue for the Tullock contest. After all, this would imply,

for instance, that the quintic constructed in the discussion of Example 3 is tractable by

allowing for additional operations. But the properties of unsolvable quintics have been

studied very thoroughly by mathematicians for more than two centuries, making this

indeed a very remote possibility. Thus, even if our definition of tractability excludes

the use of elementary functions, it seems to capture quite accurately which polynomial

equations are tractable in a practical sense and which are not.38

5.2 The need for a postulate

There is, however, another problem that cannot be wiped away so easily, viz. that the

tractability of a model is a rather vague concept. The situation is reminiscent of the

problem of defining effective computability in computer science. It requires a postulate,

such as the Church-Turing thesis, to assert that computability in the intuitive sense

(i.e., by a scientist) is equivalent to computability in the formal sense (e.g., by a Turing

machine). Similarly here, it seems to require such a postulate to assert that tractability

in the practical sense is equivalent to tractability in the formal sense.39

38The mathematical literature has identified ways to deal with the implications of Galois’ theory.
According to a survey poster (Wolfram Research, 2005), there are solution approaches for general
polynomial equations based on continued fractions, modular forms, theta functions, infinite series
representations, Mellin integrals, hypergeometric functions, and elliptic Siegel functions. Such ap-
proaches, however, tend to add a multivariate transcendental function to the set of admissible oper-
ations (Umemura, 2007). The extent to which those methods are suitable for economic analysis is,
therefore, still to be explored.

39Conversely, one might also argue that Definition 1 is too generous in some cases, e.g., if the
resulting formulas are difficult to interpret or to work with. Given the purpose of the present paper,
however, which is an impossibility result, we are on the safe side with respect to that concern.
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5.3 Alternative values of R

Theorem 1 is a partial result in the sense that there might exist values of the parameter

R different from 1
2
for which a solution formula exists. However, as we argue below,

that possibility is likewise unlikely. For rational R = p
q
, with integers q > p > 0, the

unique vector of equilibrium efforts solves a system of algebraic equations. As seen

above for p = 1 and q = 2, that system can be reduced by hand to a single polyno-

mial equation for the generalized aggregate X. In general, that simplification is still

available, as we show in Appendix A.7. However, the polynomial quickly becomes

more complex. Table I illustrates this by reporting the degree d of the minimal poly-

nomial produced by Mathematica for a three-player Tullock contest with valuations

(V1, V2, V3) = (3, 2, 1). For the considered cases with p > 1, the problem could be

reduced to solving a polynomial of degree d′ = d/p using the substitution Z = Xp.

p/q 1/2 1/3 2/3 1/4 3/4 1/5 2/5 3/5 4/5

d 3 7 14 13 39 21 38 57 84

d′ 3 7 7 13 13 21 19 19 21

Table I: The degrees of the respective minimal polynomials of X and Z = Xp

Cases in which we were able to determine a Galois group include p ∈ {1, 2} and

q = 3, corresponding to R = 1
3
and R = 2

3
. In those cases, the polynomial is of degree

d = d′ = 7, irreducible, and of Galois group S7, which is unsolvable. In all other cases,

the degree of the minimal polynomial is so large that, even if an example could be

found in which the Galois group is solvable, the resulting explicit formula might either

never be found or, if it can be found, would be of little practical value.40

40A story that might come to mind is that, at the end of the 19th century, the German mathe-
matician Johann Gustav Hermes spent a decade showcasing the construction of the regular 65537-gon
with straightedge and compass.
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5.4 Implications for numerical analysis

One might wonder to what extent Equation (19) can be generalized to any R = p
q
with

integers q ≥ p ≥ 1. This might yield an interesting representation that is amenable

to numerical analysis and could be useful, for example, for contest experiments. The

generalized aggregate X is indeed always algebraic over Q(σ1, . . . , σn). In fact, we have

the following result.

Proposition 4 Suppose that R = p
q
, with 0 < p < q integers, and let n ≥ 2. Then,

the generalized aggregate X = (x
p/q
1 + . . .+ x

p/q
n )q/p is the root of a nonzero polynomial

whose coefficients are taken from Z[σ1, . . . , σn].

Proof. See Appendix A.7. □

Once such a polynomial is found by symbolic manipulation, X can be numerically

obtained for any given vector (V1, . . . , Vn). From there, equilibrium efforts can be

derived via the first-order conditions. The following example illustrates this approach.

Example 4 For n = 3 and R = 1
3
, the generalized aggregate

X = (x
1/3
1 + x

1/3
2 + x

1/3
3 )3
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is a root of the irreducible polynomial 41

g3(X;V1, V2, V3) = (3X)7 − 6σ2(3X)5 −
(
2σ1σ2 + 58σ3

)
(3X)4

+
(
−79σ1σ3 + 9σ2

2

)
(3X)3 +

(
−32σ2

1σ3 + 6σ1σ
2
2 − 22σ2σ3

)
(3X)2

+
(
−4σ3

1σ3 + σ2
1σ

2
2 − 13σ1σ2σ3 + 8σ2

3

)
(3X)

+
(
−2σ2

1σ2σ3 + 2σ1σ
2
3

)
.

Specializing to V1 = 3, V2 = 2, V3 = 1 yields σ1 = 6, σ2 = 11, σ3 = 6, and

g3(X) = 2187X7 − 16038X5 − 38880X4 − 47385X3 − 36072X2 − 17064X − 4320.

The unique real root of g(X) is X = 3.74. Plugging this into the first-order conditions

xi =
1

216X2

(
−Vi +

√
V 2
i + 12ViX

)3

gives equilibrium efforts x1 = 0.240, x2 = 0.150, and x3 = 0.064.

6 Concluding remarks

In this paper, we have shown that the pure-strategy Nash equilibrium of the n-player

Tullock contest cannot, in general, be expressed in terms of the primitives of the model

using only basic arithmetic operations and root extractions. We have also explained

why this limitation of the model cannot be overcome by introducing familiar functions

such as the exponential or the logarithm. Thus, our analysis clearly delineates the

boundaries of tractability for an important workhorse model.

41This polynomial was found using Mathematica. To verify that g3(X;V1, V2, V3) is irreducible
over Q(V1, V2, V3), we checked via Sage that g3(X; 3, 2, 1) is irreducible over Q. For V3 = 0, the

polynomial g3(X;V1, V2, 0) = 3X
(
27X3 − 9Xσ2 − σ1σ2

)2
has a unique positive root, of multiplicity

two, at X∗ = 1
3 (V1V2)

1/3(V
1/3
1 + V

1/3
2 ), linking the example back to Proposition 3.

29



What is the broader scope of the methods developed here? We believe that our for-

mal definition of tractability applies naturally to other economic environments. Specif-

ically, in models such as Bertrand pricing, Walrasian exchange, and arms races with

incomplete information, equilibria can be characterized as solutions of systems of poly-

nomial equations, possibly complemented by inequality constraints (Judd et al., 2012).

Applications of the Shape Lemma, followed by an analysis along the lines developed in

the present paper, might then allow researchers to determine, once and for all, whether

such models are solvable by radicals. As in the case of the Tullock contest studied

above, such an approach could settle recurring speculations regarding the possibility

of extending tractable cases in economic theory.

A Appendix

This appendix contains material that has been omitted from the body of the paper.

A.1 Details on Example 1

We first check the equilibrium property directly. Given that R < 1, it is never optimal

for any contestant to exert an effort of zero. Moreover, payoff functions are globally

strictly concave in own effort in the interior. It therefore suffices to check the first-order

conditions. Indeed, define the generalized aggregate

X∗ = (
√

x∗
1 +

√
x∗
2 +

√
x∗
3 +

√
x∗
4 +

√
x∗
5)

2

=

(√
1944
625

+
√

216
121

+
√

24
25

+
√

1176
3025

+
√

24
625

)2

= 24.
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One may now check mechanically that the claimed value for each x∗
i satisfies the first-

order condition √
X∗ −

√
x∗
i

2X∗
√

x∗
i

Vi − 1 = 0.

This shows that we have indeed identified an equilibrium.

To understand why this special case is tractable, we aggregate the five first-order

conditions into the single polynomial equation (cf. the details on Example 3 provided

in the body of the paper)

ĝ(X) = 4X5 − 1553X3 − 15864X2 − 50139X − 40824 = 0.

But ĝ(X) fails to be irreducible. In fact, one can check that

ĝ(X) = (X − 24) (4X4 + 96X3 + 751X2 + 2160X + 1701),

so that X∗ = 24 is a solution for the generalized aggregate.

A.2 Extension of Proposition 3

Recall that λ = V2/V1 ∈ (0, 1] denotes the ratio of the second-highest to the highest

valuation. We did not find a reference for the following result.

Proposition A.1 Suppose that V1 ≥ . . . ≥ Vn > 0 with n ≥ 3. Suppose also that

R ∈ (1, 1 + λR], and that

V3 ≤ V1
λR

(1 + λR)2−1/R

R2

(R− 1)1−1/R
. (A.1)

Then, the n-player Tullock contest admits a pure-strategy Nash equilibrium character-

ized by (10)-(12) for contestants i ∈ {1, 2}, and by x∗
i = p∗i = Π∗

i = 0 for contestants

i ∈ {3, . . . , n}.
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Proof. It follows from Proposition 3 that contestants 1 and 2 play a best response.

To establish that none of the contestants i ∈ {3, . . . , n} have an incentive to deviate, it

certainly suffices to consider contestant i = 3. By Cornes and Hartley (2005, Prop. 4),

the zero bid is a best response for contestant 3 given efforts x1 = x∗
1, x2 = x∗

2, and

xj = 0 for any j ≥ 4, if and only if

(x∗
1)

R + (x∗
2)

R ≥ V R
3

(R− 1)R−1

RR
.

Using (10), this transforms into (A.1). □

In the constant-returns case R = 1, we have (R− 1)1−1/R = 00 = 1, so that inequality

(A.1) becomes V3 ≤ 1
2
V̄2. Thus, this simply brings us back to the case dealt with in

Proposition 2.

The equilibrium identified in Proposition A.1 need not be unique, however. To see

this, it suffices to consider the case where R = 1 + λR. Then, inequality (A.1) reads

V3 ≤ V2R
1/R, which is automatically fulfilled. Thus, by continuity, for R close to 1+λR

and valuations close to identical, there are multiple pure-strategy equilibria, viz. one

for each pair of active contestants.

A.3 The principal value of the Kth root

This section provides further background regarding the Kth root. It also prepares the

analysis of the case K = 3 and R = 1
2
dealt with in the next section. As discussed in

the body of the paper, the Kth root K
√
s of a complex number s ∈ C\{0} is defined

up to a unit-root factor. Thus, any s ̸= 0 admits precisely K pre-images that differ by

powers of the Kth unit root ζK = exp(2π
√
−1/K). To resolve the resulting ambiguity,

one may refer to the principal value of K
√
s, which is defined as follows. Given s ̸= 0,
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we find unique polar coordinates r > 0 and φ ∈ (−π, π] such that s = r exp(φ
√
−1).

Then, using de Moivre’s identity,

K
√
s = K

√
r exp

( φ

K

√
−1
)

is a Kth root of s, known as the principal value.

A special case of interest is a root of a complex number with positive real part.

Lemma A.1 Let s = σ + τ
√
−1, with σ > 0 and τ real. In this case, the principal

value of the Kth root of s is given by

K
√
s =

2K
√
σ2 + τ 2

(
cos(

1

K
arctan(

τ

σ
)) +

√
−1 sin(

1

K
arctan(

τ

σ
))

)
.

Proof. In the considered case, r =
√
σ2 + τ 2 and φ = arctan(τ/σ). Hence, the

principal value is given as

K
√
s =

2K
√
τ 2 + σ2 exp

(√
−1

K
arctan(

τ

σ
)

)
.

The claim follows now from Euler’s formula exp(φ
√
−1) = cosφ+

√
−1 sinφ. □

A.4 The case n = 3 and R = 1
2

It follows from the present analysis that the case R = 1
2
is tractable for any n ≥ 2,

provided that valuations are taken from at most four different values. For example,

the Tullock contest with n = 5 players, where V1 = V2 > V3 > V4 > V5 > 0 and

R = 1
2
, admits an explicit solution, because the analysis of first-order conditions leads

to a polynomial equation of degree four, which can always be solved using radicals

(van der Waerden, 1937, §58). Below, we derive a comparably simple solution for

n = 3, exploiting that all roots of the minimal polynomial of X are real.42

42Using the approach outlined in Krvavica (2019), similar expressions appear feasible for n ≥ 4,
under the conditions just explained.
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Proposition A.2 Suppose that there are n = 3 contestants, with valuations V1 ≥ V2 ≥

V3 > 0. Suppose also that R = 1
2
. Then, the solution of the Tullock contest is given by

equations (15-17) in the body of the paper, where

X∗ =

√
ca
c3g

· cos

1

3
arctan

√(
ca
cg

)3

− 1

 , (A.2)

ca and cg denote, respectively, the arithmetic and geometric means of the reciprocal

valuations 1
V1
, 1

V2
, and 1

V3
.

Proof. Suppose first that valuations are homogeneous, i.e., V1 = V2 = V3 ≡ V . Then,

from Proposition 1, x∗
1 = x∗

2 = x∗
3 =

V
9
. Hence,

X∗ =
(√

x∗
1 +

√
x∗
2 +

√
x∗
3

)2
= V .

But equation (A.2) delivers the same result because ca = cg = 1
V

in that case. This

proves the claim in the case of homogeneous valuations. Suppose next that not all val-

uations are identical. Then, cg < ca (Hardy et al., 1934, p. 17). Under the assumptions

made, equation (14) reads

V1

2X + V1

+
V2

2X + V2

+
V3

2X + V3

= 1.

Multiplying through with the common denominator and collecting terms, we obtain a

depressed43 cubic equation

X3 + aX + b = 0, (A.3)

where a = −3ca
4c3g

and b = − 1
4c3g

. The discriminant is

D = −4a3 − 27b2 =
27

16c6g

((
ca
cg

)3

− 1

)
> 0.

43A cubic equation is called depressed if there is no quadratic term.
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Thus, the cubic has three real solutions, one of which is positive and two of which

are negative. We are in the casus irreducibilis, i.e., any explicit solution by radicals

requires the extraction of roots from complex numbers. The solution is X∗ = C − a
3C

,

with a total of six possibilities for

C =
3

√
− b

2
+

√
b2

4
+

a3

27
=

1

2cg

3

√
1±

√
1− (ca/cg)

3.

Hence,

X∗ =
1

2cg

 3

√
1±

√
1− (ca/cg)

3 +
(ca/cg)

3

√
1±

√
1− (ca/cg)

3

 , (A.4)

where the ± in front of the square roots assume the same value and the cubic roots take

the same value. To select the values of the roots, one notes first that the right-hand

side of equation (A.4) does not depend on the sign in front of the square root. Indeed,

regardless of the choice of the cubic root, the first term in the large brackets can be

easily seen to be the complex conjugate of the second term. We may therefore, without

loss of generality, select the positive sign in front of the square root. Further, we know

that X∗ is the unique positive solution of equation (A.3). But the only way to arrive

at a positive value in equation (A.4) is to select the principal value for the cubic root.

It now suffices to apply Lemma A.1 to obtain the claimed formula for X∗. □

Equation (A.2) uses trigonometric functions to circumvent the extraction of roots from

complex numbers. This approach goes back to Viète, who proposed it to avoid the use

of complex numbers in the casus irreducibilis of Cardano’s analysis (cf. Plante, 2018).

We illustrate the use of Proposition A.2 with an example.

Example A.1 Suppose that (V1, V2, V3) = (6, 3, 2). Then, ca =
1
3
( 1
V1

+ 1
V2

+ 1
V3
) = 0.33

and cg = 1/ 3
√
V1V2V3 = 0.30. Hence, X∗ = 3.411. Individual efforts are, therefore,
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given by x∗
1 = 0.75, x∗

2 = 0.32, and x∗
3 = 0.18. Winning probabilities are p∗1 = 0.47,

p∗2 = 0.31, and p∗3 = 0.23. Payoffs are Π∗
1 = 2.06, Π∗

2 = 0.60, and Π∗
3 = 0.28.

For completeness, we mention that, in the case dealt with by Proposition A.2, the

discriminant D is known to determine the Galois group. Specifically, if D is not a

square of a rational number, then the Galois group is S3. An example is (V1, V2, V3) =

(3, 2, 1). Then, D = 359/24 is not a square. And indeed, the minimal polynomial

g(X) = X3 − 11
4
X − 3

2
is irreducible with Galois group S3. If, however, D happens

to be square, then the Galois group is the cyclic group of order three, i.e., C3. An

example is (V1, V2, V3) = (6, 3, 2). Then, D = 36 is a square. And indeed, the minimal

polynomial g(X) = X3−9X−9 is irreducible with cyclic Galois group C3 (cf. Example

A.1 above and Example 2 in the body of the paper).

A.5 Proof of Theorem 1

Fix n ≥ 5. To provoke a contradiction, suppose that there exists an explicit formula

x∗
i = fn,R(V1, . . . , Vn)

for the equilibrium effort of some player i ∈ {1, . . . , n}, computable from the primitives

V1, . . . , Vn using basic arithmetic operations and by taking roots. From the discussion

in the body of the paper, we know that

x∗
i =

X∗V 2
i

(2X∗ + Vi)2
,

where X∗ is the unique positive solution of

V1

2X + V1

+ . . .+
Vn

2X + Vn

− 1 = 0.
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Rewriting yields {
n∑

i=1

Vi

∏
j ̸=i

(2X + Vj)

}
−

n∏
i=1

(2X + Vi)

n∏
i=1

(2X + Vi)
= 0. (A.5)

Recall that the system of elementary symmetric polynomials in n variables satisfies the

recursive relationship

σk(V1, . . . , Vn) = σk(V1, . . . , Vn−1) + Vnσk−1(V1, . . . , Vn−1),

for k ∈ {1, . . . , n}. Using this relationship, straightforward induction arguments show

that

n∏
i=1

(2X + Vi) =
∑n

k=0
σk(V1, . . . , Vn)(2X)n−k,

n∑
i=1

Vi

∏
j ̸=i

(2X + Vj) =
∑n

k=0
kσk(V1, . . . , Vn)(2X)n−k.

Up to a negative sign, the numerator in (A.5) is, therefore, given by

gn(X;V1, . . . , Vn) =
∑n

k=0
(1− k)σk(V1, . . . , Vn)(2X)n−k.

The following lemma is commonly used to compute Galois groups modulo prime num-

bers, but it can be used also in our setting.

Lemma A.2 (Specialization) Let R be a unique factorization domain and let P be

a prime ideal of R. If g(X) is a polynomial with coefficients in R, and the image ḡ(X)

of g(X) under the canonical epimorphism R → R̄ = R/P has no multiple roots, then

the Galois group of ḡ(X) is a subgroup of the Galois group of g(X).

Proof. See van der Waerden (1937, §61). □

The next lemma completes the proof of Theorem 1.
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Lemma A.3 The following statements are true:

(i) gn(X;V1, . . . , Vn) does not have multiple roots; moreover, gn(0;V1, . . . , Vn) ̸= 0;

(ii) gn(X;V1, . . . , Vn−1, 0) = 2X · gn−1(X;V1, . . . , Vn−1);

(iii) the Galois group of gn−1(X;V1, . . . , Vn−1) over Q(V1, . . . , Vn−1) is a subgroup of

the Galois group of gn(X;V1, . . . , Vn) over Q(V1, . . . , Vn);

(iv) g5(X;V1, V2, V3, V4, V5) has the Galois group S5 over Q(V1, V2, V3, V4, V5);

(v) the Galois group of gn(X;V1, . . . , Vn) over Q(V1, . . . , Vn) contains S5 as a sub-

group;

(vi) gn(X;V1, . . . , Vn) is irreducible over Q(V1, . . . , Vn).

Proof. (i) This was shown in the body of the paper. (ii) By the recursive definition

of the elementary symmetric polynomials,

σk(V1, . . . , Vn−1, 0) =

{
σk(V1, . . . , Vn−1) if k < n

0 if k = n.

Hence,

gn(X;V1, . . . , Vn−1, 0) =
∑n

k=0
(1− k)σk(V1, . . . , Vn−1, 0)(2X)n−k

=
∑n−1

k=0
(1− k)σk(V1, . . . , Vn−1)(2X)n−k

= 2X ·
∑n−1

k=0
(1− k)σk(V1, . . . , Vn−1)(2X)n−1−k

= 2X · gn−1(X;V1, . . . , Vn−1),

as has been claimed. (iii) Consider the integral domain Rn = Q[V1, . . . , Vn], i.e., the

ring of polynomials in the variables V1, . . . , Vn with rational coefficients. InRn, we have
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the prime ideal Pn = ⟨Vn⟩ generated by the polynomial Vn. There is an isomorphism

R̄n = Rn/Pn ≃ Rn−1.

Moreover, the image of gn(X;V1, . . . , Vn) under the canonical epimorphism Rn → R̄n

is

ḡn(X;V1, . . . , Vn) = gn(X;V1, . . . , Vn−1, 0) = 2X · gn−1(X;V1, . . . , Vn−1).

Since 2X and gn−1(X) share no root by part (i), ḡn(X) has no multiple zeros. By

the specialization lemma (Lemma A.2), the Galois group of gn−1(X;V1, . . . , Vn−1) is

indeed a subgroup of the Galois group of gn(X;V1, . . . , Vn). (iv) We have seen above

that g5(X) has the Galois group S5 over Q. By another application of the Lemma

A.2, this implies that S5 is a subgroup of the Galois group of g5(X;V1, V2, V3, V4, V5)

over Q(V1, V2, V3, V4, V5). Given that g5(X;V1, V2, V3, V4, V5) is of degree five in X, this

implies the claim. (v) The claim follows via induction from the previous two parts.

(vi) As explained in the body of the paper, it suffices to show that gn(X), considered

as a polynomial in Z = 2X over Z[V1, . . . , Vn] does not admit a linear factor for n ≥ 2.

The proof is by contradiction. Suppose that there is some a ∈ Z[V1, . . . , Vn] such that

(Z − a) | gn(Z).44 Then, a is a root of gn(Z), i.e.,

0 =
∑n

k=0
(1− k)σka

n−k

= (1− n)σn + a
∑n−1

k=0
(1− k)σka

n−k−1.

Hence, a | (n − 1)σn. Suppose first that a ∈ Z. Then, since σ0, . . . , σn are linearly

independent over Z, we obtain 0 = 1 − n, a contradiction. Suppose next that a ̸∈ Z.

Then, from a | (n − 1)σn, we have Vi | a for some i ∈ {1, . . . , n}. Moreover, V 2
i ∤ a.

44As usual, the vertical bar | refers to divisibility within the polynomial ring.
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Therefore, V n
i | an, but V n

i ∤ σka
n−k, for any k ∈ {2, . . . , n}. Thus, a is not a root of

gn(Z), in conflict with what has been assumed. □

It follows from the above that the equilibrium efforts of any player cannot be expressed

from the valuation vector using basic arithmetic operations and by extracting roots.

The derivation for the winning probability and equilibrium payoff of any individual

contestant is entirely analogous and, therefore, omitted.

A.6 Proof of Corollary 2

We check the assumptions of Cohen (1981, Thm. 2.1). In our application, the field

extension is trivial over the number field Q. Let f(Z, V1, . . . , Vn) ≡ gn(X;V1, . . . , Vn),

be specified by (19) and Z = 2X. When considered as a polynomial in the (n + 1)

indeterminates Z, V1, . . . , Vn, f is non-zero, of total degree n (because σk is of degree

k), and possesses integer coefficients. As seen in the proof of Theorem 1, the Galois

group G of gn over Q(V1, . . . , Vn) acts transitively on its n roots (from irreducibility, see

van der Waerden (1937, p. 162)) and contains S5 as a subgroup. The term of f with the

largest coefficient in absolute value is (1− n)σn(V1, . . . , Vn). Let |f | = max{8, n− 1}.

Then, by Cohen’s theorem, there exists some c ≡ c(n), such that provided M > |f |c,

the number of (V1, . . . , Vn) ∈ {−M, . . . ,M}n for which G(V1, . . . , Vn), the Galois group

of the specialized polynomial gn(X;V1, . . . , Vn) over Q, differs from G does not exceed

|f |c/3Mn− 1
2 lnM . One notes that |f |c/3Mn− 1

2 lnM = o(Mn), where we consider the

limit M → ∞. Moreover, the number of economically meaningful valuation vectors

(V1, . . . , Vn) ∈ {1, . . . ,M}n satisfying V1 ≥ . . . ≥ Vn exceeds Mn

n!
. Let now ε > 0, and

V̄ ∈ Q with V̄ > 0 be given. By the above, there exists M0 such that for any M ≥ M0,

the number of (V1, . . . , Vn) ∈ {1, . . . ,M}n for which G(V1, . . . , Vn) ̸= G does not exceed
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εMn. Let δM = V̄/M > 0. Since f is homogeneous of degree n,

gn(XδM ;V1δM , . . . , VnδM) = δnMgn(X;V1, . . . , Vn).

Therefore, the Galois group of gn(X;V1δM , . . . , VnδM) over Q, including its operation

on the set of roots, is isomorphic to G(V1, . . . , Vn). This completes the proof of the

corollary.

A.7 Proof of Proposition 4

Rearranging player i’s first-order condition yields

Vi =
q

p

ξ q−p
i S2

S − ξpi
(A.6)

where ξi = x
1/q
i and S = ξp1 + · · · + ξpn. Consider the map Φ : (ξ1, . . . , ξn) 7→

(V1, . . . , Vn) defined component-wise by the right-hand side of (A.6). Its Jacobian

JΦ(ξ1, . . . , ξn) = (∂Vi/∂ξj)
n
i,j=1 is regular at ξ1 = · · · = ξn = 1.45 Clearing denomina-

tors, (A.6) becomes a system of equations in the unknowns ξ1, . . . , ξn with coefficients

45Indeed, a calculation shows that

∂Vi

∂ξj
(1, . . . , 1) =

{
D if i = j,

B if i ̸= j,

with

D =
q n
(
(q − p)n+ 2p

)
p(n− 1)

, B =
q n(n− 2)

(n− 1)2
.

Thus JΦ(1, . . . , 1) has constant diagonal D and constant off-diagonal B, so

det JΦ(1, . . . , 1) = (D −B)n−1
(
D + (n− 1)B

)
.

Substituting D and B and simplifying gives

det JΦ(1, . . . , 1) =
q n+1n2n

(
(q − p)(n− 1) + p

)n−1

pn(n− 1)2n−1
̸= 0

for all integers n ≥ 2 and 0 < p < q.
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in Q(V1, . . . , Vn). For generic (V1, . . . , Vn), this polynomial system has only finitely

many solutions (ξ1, . . . , ξn). Equivalently, each ξi is algebraic over Q(V1, . . . , Vn), and

hence, X = Sq/p, is algebraic over Q(V1, . . . , Vn). Finally,

T n − σ1T
n−1 + · · ·+ (−1)nσn ∈ Q(σ1, . . . , σn)[T ]

has V1, . . . , Vn as roots, so each Vi is algebraic over Q(σ1, . . . , σn). Hence Q(V1, . . . , Vn)

is an algebraic extension ofQ(σ1, . . . , σn). ThusX is algebraic overQ(σ1, . . . , σn): there

exists a nonzero polynomial h(T ) ∈ Q(σ1, . . . , σn)[T ] such that h(X) = 0. Multiplying

by a common denominator yields a nonzero polynomial g(T ) ∈ Z[σ1, . . . , σn][T ] with

g(X) = 0. This completes the proof of the proposition.

A.8 Computer-assisted parts of the proofs

In the analysis of Example 3, we used Sage, which is a web application freely ac-

cessible at sagecell.sagemath.org. The following code checks that g(X), defined in

equation (18), is irreducible over Q.

R.<X>=PolynomialRing(QQ)

(8*X^5-170*X^3-450*X^2-411*X-120).is_irreducible()

True

The final line is the output returned by Sage. Similarly, the code below computes the

Galois group of g5(X), where again, the final line is the output.

R.<X> = PolynomialRing(QQ)

g(X) = 8*X^5-170*X^3-450*X^2-411*X-120

42

https://sagecell.sagemath.org


K.<a> = NumberField(g(X))

K.galois_group()

Galois group 5T5 (S5) with order 120

To replicate these derivations, it suffices to copy either of the two code snippets to the

Sage prompt, delete the output as well as any leading spaces, and click “evaluate.”
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